Acharya, N., Sassenberg, A. M., & Soar, J. (2023). Effects of Cognitive Absorption on Continuous Use Intention of AI-driven Recommender Systems in e-commerce.
Emerald Group Publishing Limited,
25(2), 194-208,
https://doi.org/10.1108/FS10-2021-0200
Agarwal, R., & Karahanna, E. (2000). Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage.
Management Information Systems Quarterly,
24(4), 665-694,
https://doi.org/10.2307/3250951
Agrewal, S., Simon, A. M. D., Bech, S., Bærentsen, K. B., & Forchammer, S. (2020). Defining Immersion: Literature Review and Implications for Research on Audiovisual Experiences.
Journal of the Audio Engineering Society,
68(6), 404-417,
https://doi.org/10.17743/jaes.2020.0039
Bae, B. R.. (2014). Structural Equation Modeling Whit Amos 21 Seoul, Cheongnam.
Baizal, Z. K. A., Tarwidi, D., & Wijay, B. (2021). Tourism Destination Recommendation Using Ontology-based Conversational Recommender System.
International Journal of Computing and Digital Systems,
10(1), 829-838,
https://doi.org/10.12785/ijcds/100176
Benbasat, I., & Wang, W. (2005). Trust In and Adoption of Online Recommendation Agents.
Journal of the Association for Information Systems,
6(3), 72-101.
Boylan, G. L., & Cho, B. R. (2012). The Normal Probability Plot as a Tool for Understanding Data: A Shape Analysisfrom the Perspective of Skewness, Kurtosis, and Variability.
Quality and Reliability Engineering International,
28:249-264.
Breazeal, C. (2003). Emotion and Sociable Humanoid Robots.
International Journal of Human-Computer Studies,
59(1), 119-155.
Burke, R. R. (2002). Technology and the Customer Interface: What Consumers Want in the Physical and Virtual Store.
Journal of the Academy of Marketing Science,
30(4), 411-432.
Choi, J., Lee, H. J., & Kim, Y. C. (2011). The Influence of Social Presence on Customer Intention to Reuse Online Recommender Systems: The Roles of Personalization and Product Type.
International Journal of Electronic Commerce,
16(1), 129-154.
Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On Seeing Human: a Three-Factor Theory of Anthropomorphism.
Psychological Review,
114(4), 864-886.
Fabrigar, L. R., & Wegener, D. T.. (2011). Exploratory Factor Analysis Oxford University Press.
Gan, X., Jiao, Y., Liu, L., & Zhang, Y.. (2018). Research on the Factors Influencing Users’ Adoption Intention of E-commerce Recommendation System. In: TanY., ShiY., TangQ., editors. Data Mining and Big Data, 10943 p.563-574. Springer International Publishing,
https://doi.org/10.1007/978-3-319-93803-5_53.
Hebrado, J. L., Lee, H. J., & Choi, J. (2013). Influences of Transparency and Feedback on Customer Intention to Reuse Online Recommender Systems.
The Journal of Society for E-Business Studies,
18(2), 279-299,
https://doi.org/10.7838/jsebs.2013.18.2.279
Hwang, H., & Lombard, M. pp 2006). Understanding Instant Messaging: Gratification and Social Presence. In: In Paper Presented at Presence 2006 Conference; Cleveland, O. pp 50-56.
Kim, E., & Choi, Y. J. (2014). The Relationship between Perceived Social Presence and Academic Achievement when Watching Study With Me Videos : Examining the Moderated Mediation Effect of Physical Presence.
Korean Journal of Broadcasting & Telecommunications Research,
126:7-47,
https://doi.org/10.22876/kjbtr.2024..126.001
Lee, H. K., Yoon, N. H., & Jang, S. Y. (2018). Consumers’ Usage Intentions on Online Product Recommendation Service: Focusing on the Mediating Roles of Trust-Commitment.
Journal of the Korean Society of Clothing and Textiles,
42(5), 871-883,
https://doi.org/10.5850/JKSCT.2018.42.5.871
Leech, N., Barrett, K., & Morgan, G. A.. (2005). SPSS for Intermediate Statistics New Jersey, Routledge.
Levy, P. S., & Lemeshow, S.. (2013). Samplingof Populations: Methods and Applications New York, John Wiley & Sons Inc.
Lim, S. E., & Kim, J. H. (2023). The Impact of Semi-permanent Makeup Services on Customer Satisfaction and Intent to Recommend to Others.
Jounal of the Korean Society of Cosmetology,
29(6), 1577-1588,
https://doi.org/10.52660/JKSC.2023.29.6.1577
Lim, S. H., & Kim, S. H. (2018). Factors Affecting User Intentions in Omnichannel Environment : Focusing on Unified Theory of Acceptance and Use of Technology.
The Korean Journal of Advertising,
29(4), 95-129,
https://doi.org/10.14377/KJA.2018.5.31.95
Liu, L., Xing, J., Liu, S., Xu, H., Zhou, X., & Yan, S. (2014). “Wow! You Are So Beautiful Today!” ACM Transactions on Multimedia Computing.
Communications, and Applications,
11(1s), 1-22,
https://doi.org/10.1145/2659234
McLain, D. L., & Hackman, K. (1999). Trust, Risk and Decision Making in Organization Change. Public Administration Quarterly, 23(2), 152-176.
Mohammadi, V., Rahmani, A. M., Darwesh, A. M., & Sahafi, A. (2019). Trust-based recommendation systems in Internet of Things: a systematic literature review.
Human-centric Computing and Information Sciences,
9(21), 1-61,
https://doi.org/10.1186/s13673-019-0183-8
Neigel, A. R. (2018). The Role of Trust and Automation in an Intelligence Analyst Decisional Guidance Paradigm.
Journal of Cognitive Engineering and Decision Making,
12(4), 239-247.
Nilashi, M., Jannach, D., Ibrahim, B. O., & Esfahani, D. M. (2016). Recommendation Quality, Transparency, and Website Quality for Trust-Building in Recommendation Agents.
Electronic Commerce Research and Applications,
19:70-84.
Nilsson, N. C., Nordahl, R., & Serafin, S. (2016). Immersion Revisited: A Review of Existing Definitions of Immersion and Their Relation to Different Theories of Presence.
Human Technology,
12(2), 108-134,
https://doi.org/10.17011/ht/urn.201611174652
Oh, S. J., Choi, M. K., Kim, H. S., Yu, K. Y., Cho, H. M., & Kim, S. Y. (2009). Development of Makeup Recommendation System using High School Student’s Preference. Korean Institute of Information Scientists and Engineers, 36(2), (B), 156-160.
Park, J. S., & Kwon, H. J. (2017). Perception about Makeup Influence on Man’s Makeup and Their Success.
Journal of the Korea Convergence Society,
8(4), 231-237.
Pearson, C. J., Geden, M., & Mayhorn, C. B. (2019). Who’s the real expert here? Pedigree’s unique bias on trust between human and automated advisers.
Applied Ergonomics,
81.
Rehman Khan, H. U., Lim, C. K., Ahmed, M. F., Tan, K. L., & Bin Mokhtar, M. (2021). Systematic Review of Contextual Suggestion and Recommendation Systems for Sustainable e-Tourism.
Sustainability,
13(15), 8141.
https://doi.org/10.3390/su13158141
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. pp 2000). Analysis of Recommendation Algorithms for E-commerce. In: In Proceedings of the Second ACM Conference on Electronic Commerce; pp 158-167.
Schafer, B., Konstan, J., & Riedl, J. pp 1999). Recommender Systems in E-Commerce. In: 1st ACM Conference on Electronic Commerce; Denver, Colorado, United States.
https://doi.org/10.1145/336992.337035.
Sharma, S., Rana, V., & Malhotra, M. (2022). Automatic Recommendation System Based on Hybrid Filtering Algorithm.
Education and Information Technologies,
27(2), 1523-1538,
https://doi.org/10.1007/s10639-021-10643-8
Shi, S., Gong, Y., & Gursoy, D. (2021). Antecedents of Trust and Adoption Intention toward Artificially Intelligent Recommendation Systems in Travel Planning: A Heuristic-Systematic Model.
Journal of Travel Research,
60(8), 1714-1734,
https://doi.org/10.1177/0047287520966395
Sung, K. B., Han, S. M., & Kim, T. W. (2023). The Effect of The Recommendation System’s Quality Factor on Purchase Intention: Focusing on Trust and Online Store Image in Dual Mediation Effect.
Korean Journal of Marketing,
38(1), 75-91,
https://doi.org/10.15830/kjm.2023.38.1.75
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View.
Management Information Systems Quarterly,
27(3), 425-478.
Wang, Y.-Y., Luse, A., Townsend, A. M., & Mennecke, B. E. (2015). Understanding the Moderating Roles of Types of Recommender Systems and Products on Customer Behavioral Intention to Use Recommender Systems.
Information Systems and E-Business Management,
13(4), 769-799,
https://doi.org/10.1007/s10257-014-0269-9
Xiao, B., & Benbasat, I. (2007). E-Commerce Product Recommendation Agents: Use, Characteristics and Impact.
MIS Quarterly,
31:137-209.