Acharya, N., Sassenberg, A. M., & Soar, J. (2023). Effects of Cognitive Absorption on Continuous Use Intention of AI-driven Recommender Systems in e-commerce.
Emerald Group Publishing Limited,
25(2), 194-208, DOI:
10.1108/FS-10-2021-0200
Agarwal, R., & Karahanna, E. (2000). Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage.
Management Information Systems Quarterly,
24(4), 665-694, DOI:
10.2307/3250951
Aithal, A., & Aithal, P. S. (2020). Development and Validation of Survey Questionnaire & Experimental Data: A Systematical Review-based Statistical Approach.
International Journal of Management, Technology, and Social Sciences (IJMTS),
5(2), 233-251.
Balakrishnan, J., & Dwivedi, Y. K. (2021). Role of Cognitive Absorption in Building User Trust and Experience.
Psychology & Marketing,
38(4), 643-668, DOI:
10.1002/mar.21462
Chung, K. Y. (2010). Human Sensibility Ergonomics Makeup Recommendation System using Context Sensor Information.
The Journal of the Korea Contents Association,
10(7), 23-30.
Cheng, P., Meng, F., Yao, J., & Wang, Y. (2022). Driving With Agents: Investigating the Influences of Anthropomorphism Level and Physicality of Agents on Drivers’ Perceived Control, Trust, and Driving Performance.
Frontiers in Psychology,
13:1-14, DOI:
10.3389/fpsyg.2022.883417
Csikszentmihalyi, M.. (1990). FLOW: The Psychology of Optimal Experience New York, Harper & Row, p.1.
Elston, R. C., Satagopan, J. M., & Sun, S.. (2012). Statistical Human Genetics: Methods and Protocols New York, Humana Press, p.495-511.
Gulati, K., Verma, G., Mohania, M., & Kundu, A.. (2022). BeautifAI - Personalised Occasion-based Makeup Recommendation Proceedings of Machine Learning Research.
Guo, Y. M., & Ro, Y. K. (2008). Capturing Flow in the Business Classroom.
Decision Sciences Journal of Innovative Education,
6(2), 437-462, DOI:
10.1111/j.1540-4609.2008.00185.x
Hong, E. J., Cho, K. S., & Choi, J. H. (2017). Effects of Anthropomorphic Conversational Interface for Smart Home: An Experimental Study on the Voice and Chatting Interactions.
Jourmal of the HCI Society of Korea,
12(1), 15-23.
Hwang, S. I., & Nam, Y. J. (2020). The Analysis of the Mediating and Moderating Effects of Perceived Risks on the Relationship between Knowledge, Feelings and Acceptance Intention towards AI.
The Journal of the Korea Contents Association,
20(8), 350-358, DOI:
10.5392/JKCA.2020.20.08.350
Im, D. S., & Lee, S. G. (2022). A Studyon the Effect of Tourism Industry Mobile Chatbot Quality on Social Presence, Supply Trust, and Continued Use Intention: The Moderating of Effects of Personal Innovation and Personification.
Korean Corporation Management Review,
29(2), 207-235, DOI:
10.21052/KCMR.2022.29.2.09
Jeon, S. W., Lee, J. H., & Lee, J. T. (2019). A Study on the Users Intention to Adopt an Intelligent Service: Focusing on the Factors Affecting the Perceived Necessity of Conversational A.I. Service.
Journal of Korea Technology Innovation Societ,
22(2), 242-264.
Kang, S. H., & Kim, H. K. (2016). A Study on the User’s Acceptance and Use of Easy Payment Service: Focused on the Moderating Effect of Innovation Resistance.
Management & Information Systems Review,
35(2), 167-183.
Kimberlin, C. L., & Winterstein, A. G. (2008). Validity and Reliability of Measurement Instruments Used Inresearch.
American Journal of Health-System Pharmacy,
65:2276-2284.
Kim, E., & Choi, Y. J. (2014). The Relationship between Perceived Social Presence and Academic Achievement when Watching Study With Me Videos : Examining the Moderated Mediation Effect of Physical Presence.
Korean Journal of Broadcasting & Telecommunications Research,
126:7-47, DOI:
10.22876/kjbtr.2024..126.001
Kim, H. K., Do, M. R., Choi, J. S., & Choi, J. I. (2023). A Study on the Relationship between Characteristics of AI Recommendation System-based Fashion Subscription Service and Intention to Use.
Journal of Korea Service Management Society,
24(1), 26-54, DOI:
10.15706/jksms.2023.24.1.002
Klein, K., & Martinez, L. F. (2023). The Impact of Anthropomorphism on Customer Satisfaction in Chatbot Commerce: An Experimental Study in The Food Sector.
Electronic Commerce Research,
23:2789-2825, DOI:
10.1007/s10660-022-09562-8
Lee, H. K., Yoon, N. H., & Jang, S. Y. (2018). Consumers’ Usage Intentions on Online Product Recommendation Service: Focusing on the Mediating Roles of Trust-Commitment.
Journal of the Korean Society of Clothing and Textiles,
42(5), 871-883, DOI:
10.5850/JKSCT.2018.42.5.871
Levy, P. S., & Lemeshow, S.. (2013). Samplingof Populations: Methods and Applications New York, John Wiley & Sons Inc.
Li, Q., Luximon, Y., & Zhang, J. (2023). The Influence of Anthropomorphic Cues on Patients’ Perceived Anthropomorphism, Social Presence, Trust Building, and Acceptance of Health Care Conversational Agents: Within-Subject Web-Based Experiment.
Journal of Medical Internet Research,
25:e44479. 1-25. DOI:
10.2196/44479
Musil, C. M., Jones, S. L., & Warner, C. D. (1998). Structural Equation Modeling and Its Relationship Tomultiple Regression and Factor Analysis.
Research in Nursing & Health,
21:271-281.
Nowak, K. L., & Biocca, F. (2003). The Effect of the Agency and Anthropomorphism on Users’ Sense of Telepresence, Copresence, and Social Presence in Virtual Environments.
Presence Teleoperators & Virtual Environments,
12(5), 481--494, DOI:
10.1162/105474603322761289
Park, J. S., Rew, J. H., Rho, S. M., & Hwang, E. J. (2016). Mak-up Contents Recommendation Scheme Based on Personal Color Analysis. In Proceedings of the KIPS Transactions on Computer and Communication Systems, 27:712-715.
Shrestha, N. (2021). Factor Analysis asa Tool for Survey Analysis.
American Journal of Applied Mathematics and Statistics,
9:4-11.
Watkins, M. W.. (2021). A Step-by-StepGuide to Exploratory Factor Analysis with SPSS 1st ed. New York, Routledge.
Webster, J., & Ho, H. (1997). Audience Engagement in Multimedia Presentations.
ACM SIGMIS Database: The DATABASE for Advances in Information Systems,
28(2), 63-77, DOI:
10.1145/264701.264706